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BBM with absorption

I Started at x ∈ R+, a particle moves according to standard
Brownian motion with drift −ρ(ρ ∈ R) and is killed upon
hitting the origin.

I With rate 1, this particle undergoes dyadic branching.
I Each offspring independently repeats above process and the

system goes on.
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Survival and extinction

Theorem (Kesten, 1978)

When ρ ≥
√

2, BBM with absorption dies out almost surely.
When ρ <

√
2, there is a positive probability of survival.

Henceforth, we will focus on the subcritical (ρ >
√

2) and critical
(ρ =

√
2) cases.

Questions

Let ρ =
√

2 + ε where 0 < ε < 1. To understand the transition
from the subcritical case to the critical case, we are interested in
the long-run behavior of the process conditioned on survival (i.e.
Yaglom-type limits) in the slightly subcritical regime where ε is
sufficiently small.
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Critical case (ρ =
√
2): Survival probability starting

from large x

Let c = (3π2)1/3/
√

2. For t ≥ 0, define

L(t) = ct1/3.

Building on earlier work of Kesten (1978) and Berestycki, Beresty-
cki and Schweinsberg (2014), Maillard and Schweinsberg (2020)
proved that

Theorem (Maillard-Schweinsberg, 2020)

There exists a function φ : R→ (0, 1) satisfying limx→∞ φ(x) = 0
and limx→−∞ φ(x) = 1 such that for all x ∈ R,

lim
t→∞

PL(t)+x (ζ ≤ t) = φ(x).



Critical case (ρ =
√
2): Yaglom-type limits

I Kesten (1978) proved a Yaglom-type limit theorem for the
number of particles conditioned on survival for a long time.

I Maillard and Schweinsberg (2020) gave the joint asymptotic
distribution of the survival time ζ, the number of particles
Nt and the position of the rightmost particle Mt conditioned
on survival for a long time.

Theorem (Maillard-Schweinsberg, 2020)

Suppose the process starts from a single particle at x > 0. Let
V ∼ Exp(1) and c = (3π2)1/3/

√
2. Conditional on ζ > t, as

t→∞,(
t−2/3(ζ − t), t−2/9 logNt, t

−2/9Mt

)
⇒

(
3

21/2c
V,

31/3c2/3

21/6
V 1/3,

31/3c2/3

22/3
V 1/3

)
.



Subcritical case (ρ >
√
2): Long run survival probability

and Yaglom-type limits

Let P ρx be the probability measure for BBM with absorption
started from a single particle at x > 0 with drift −ρ.
Let Eρx be the expectation under P ρx .
Let Nρ

t be the number of particles at time t under P ρx .

Theorem (Harris-Harris, 2007)

For ρ >
√

2 and x > 0, there exists a constant Kρ that is inde-
pendent of x but dependent on ρ such that,

lim
t→∞

P ρx (ζ > t)

√
2πt3

x
e−ρx+(ρ2/2−1)t = Kρ

and

lim
t→∞

Eρx[Nρ
t |ζ > t] =

2

ρ2Kρ
.
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Existence of the Yaglom limit law

Let N ρ
t be the set of particles alive at time t and {Xs(u), 0 ≤ s ≤

t}u∈N ρt be the past trajectories of particles alive at time t.
Define Dt =

∑
u∈N ρt

δXt(u).

Proposition (Berestycki, L., Mallein, Schweinsberg (2022+))

For all ρ >
√

2 and x > 0, the probability distribution

Dρ(·) = lim
t→∞

P ρx (Dt ∈ ·|ζ > t)

is well defined. Furthermore,

Dρ(A) = P ρDρ(Dt ∈ A|ζ > t).

and Dρ is the minimal quasi-stationary distribution for BBM with
absorption and drift −ρ.



Survival probability starting from large x
For every 0 < ε < 1, define

Lε(t) = ε−1/2F−1(ε3/2t),

where

F (u) = u− ω arctan(u/ω), ω = 2−3/4π.

Theorem (Berestycki, L., Mallein, Schweinsberg (2022+))

Suppose there exists a positive constant C such that 0 < tεε
3/2 <

C for all ε sufficiently small. Then for every δ > 0, there exist
postive constants C1 and C2 such that for all ε sufficiently small,

P ρLε(tε)−C1
(ζ > tε) < δ,

and
P ρLε(tε)+C2

(ζ < tε) < δ.



Properties of Lε(t)

Lε(t) = ε−1/2F−1(ε3/2t),

where F : u 7→ u− ω arctan(u/ω) and ω = 2−3/4π.

I If t� ε−3/2, then for c = (3π2)1/3/
√

2,

Lε(t) = ct1/3 + o(1)

which matches up with the critical case.

I If t� ε−3/2, then Lε(t) behaves like a linear function

Lε(t) = εt+
ωπ

2
ε−1/2 + o

(
ε−1/2

)
.



Yaglom-type limit for the expected number of particles

We show that the long-run expected number of particles condi-
tioned on survival grows exponentially as 1/

√
ε as the process

approaches criticality.

Theorem (L., 2020)

There exist positive constants C1 and C2 such that for ε small
enough,

eC1/
√
ε ≤ E[EρDρ [N

ρ
0 ]] ≤ eC2/

√
ε.

Equivalently, for ε small enough,

eC1/
√
ε ≤ lim

t→∞
Eρx[Nρ

t |ζ > t] ≤ eC2/
√
ε.



Expected behavior vs. Typical behavior

If the process started from the Yaglom limit law, is the expected
behavior of the process the same as its typical behavior?

Or in other words,

Conditioned on survival until an unusually large time t, does
the long-run expected behavior of the process gives the long-run
typical behavior?



Yaglom-type limits for the typical behavior

Let ζ be the extinction time, Nρ
t be the number of particles at

time t and Mρ
t be the rightmost position at time t.

Theorem (Berestycki, L., Mallein, Schweinsberg (2022+))

Let V have an exponential distribution with mean one. For BBM
with absorption and drift −ρ started from the Yaglom limit Dρ,
we have the joint convergence in distribution as ε→ 0(

εζ, ε1/3 logNρ
0 , ε

1/3Mρ
0

)
⇒
(

1√
2
V,

(3π2)1/3

21/6
V 1/3,

(3π2)1/3

22/3
V 1/3

)
.

Remark: As the process approaches criticality, conditioned on
survival up to a large time t, the additional time for which the
process will survive is O(ε−1), the long-run number of particles
grows exponentially as ε−1/3, and the long-run rightmost position
grows polynomially as ε−1/3.



Expected behavior vs. Typical behavior
In the slightly subcritical regime, conditioned on survival up to
time t, the typical number of survival particles is very different
from its expected number,

logNρ
t = Op(ε

−1/3), logEρx[Nρ
t ] = O(ε−1/2).

I The reason for this difference is that the mean is dominated
by rare events in which the number of particles is unusually
high.

I In the slightly subcritical regime, conditioned on ζ > t, we
have

Nρ
t ≈ exp

(
(3π2)1/3

21/6
V 1/3ε−1/3

)
I We have

Eρx[Nρ
t |ζ > t] ≈

∫ ∞
0

exp

(
(3π2)1/3

21/6
s1/3ε−1/3

)
· e−sds,

and the integrand is maxmized when s = O(ε−3/2).
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A heuristic explanation

Recall that ζ is the survival time.

I Harris and Harris (2007) proved that

P ρx (ζ > t) ∼ Kρ√
2πt3

xeρx−
√
2εt.

I We get

lim
t→∞

P ρx (ζ > t+ s|ζ > t) = lim
t→∞

P ρx (ζ > t+ s)

P ρx (ζ > t)
= e−

√
2εs.

I Therefore conditioned on ζ > t, ζ − t ∼ Exp(
√

2ε).



A heuristic explanation
Recall that Nρ

t is the number of particles at time t and Mρ
t is the

rightmost position at time t.

I Consider BBM with drift −ρ = −
√

2− ε in the strip [0,K].
The density pt(x, y) for this process satisfies

pt(x, y) ≈ 2

K
e(1−ρ

2/2−π2/2K2)teρx sin

(
πx

K

)
e−ρy sin

(
πy

K

)
.

I The density pt(x, y) gives a good approximation of the par-
ticle configuration if K is large enough that particles are
unlikely to be killed at K, but small enough that the trun-
cated second moment is comparable with the first moment.
A good choice of K would be near the rightmost position.

I Particles eventually settle into a configuration in which the
density of particles near y is proportional to e−ρy sin(πy/K).
Therefore, the probability that a particle is close to K is
approximately e−ρK , which implies that logNρ

t ≈ ρK ≈
ρMρ

t .



A heuristic explanation
I In a typical realization, conditioned on ζ > t,

ζ − t ≈ 1√
2
V ε−1 = Op(ε

−1)

and the process should behave very much like the critical
process.

I Let c = (3π2)1/3/
√

2. In the critical case, if the process
survives until time t+s, the position of the rightmost particle
at time t should be around cs1/3 and the number of particles
at time t should be near e

√
2cs1/3 .

I Conditioned on ζ > t, we expect

Mρ
t ≈ c(ζ − t)1/3 ≈ c

(
1√
2
V ε−1

)1/3

=
(3π2)1/3

22/3
V 1/3ε−1/3,

logNρ
t ≈
√

2c(ζ−t)1/3 ≈
√

2c

(
1√
2
V ε−1

)1/3

=
(3π2)1/3

21/6
V 1/3ε−1/3.
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Derivation of Lε(t)
I Recall that for BBM with drift −ρ = −

√
2 − ε in the strip

[0,K], the density is

pt(x, y) ≈ 2

K
e(1−ρ

2/2−π2/2K2)teρx sin

(
πx

K

)
e−ρy sin

(
πy

K

)
,

which implies that

d

ds
Nρ
s =

(
1− ρ2

2
− π2

2K2

)
Nρ
s ≈

(
−
√

2ε− π2

2K2

)
Nρ
s .

I Fix t > 0. We think of K as a function of s. Note that K(s) ≈
logNρ

s /ρ. In the slightly subcritical regime, K(s) roughly satisfies

d

ds
K(s) =

1

ρNρ
s

d

ds
Nρ
s ≈

(
−ε− π2

2
√

2

)
1

K(s)2
.

I Note that Lε(t) = K(0) with K(t) = 0. Letting ω = 2−3/4π, we
get an implicit expression for Lε(t)

Lε(t) = εt+ ωε−1/2 arctan

(
ε1/2Lε(t)

ω

)
.
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